# Evaluating Transboundary Water sharing benefits with Hydro-Economic Model; Case: Teesta

PhD Research Proposal Mohammad Abul Hossen (Tuhin)

Principal Supervisor: Professor Jeffery Connor Co Supervisors: Professor Lin Crase Dr Faisal Ahammed Associate Supervisor: Dr Mac Kirby (CSIRO)



#### Journal Publications

- Hossen, M.A, Connor, J, & Ahammed, F, 2021 "Review of Hydro-Economic Models (HEMs) focusing on transboundary rivers", *Water Policy*, vol 23,no 6. pp1359-1374.
- Hossen, M.A, Connor, J, & Ahammed, F, 2021 "Evaluating a Broad Scope of Transboundary Water Sharing Benefits with Hydro-economic Modelling", *Water Resources Management*.

#### List of publications Extended Abstract Presented in Peer Reviewed Conference Proceedings

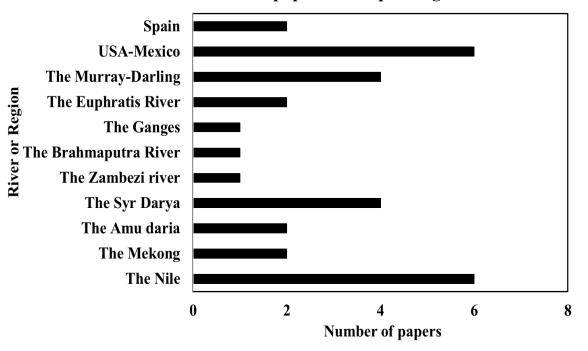
Hossen, M.A, Ahammed, F, & Connor, J 2020, 'The economic value of different types of water uses in the Teesta River of India and Bangladesh' *AARES 2020*, Perth, Australia.

#### Paper Published in Peer Reviewed Conference Proceedings

- Hossen, M.A, Ahammed, F, & Connor, J 2021, 'How to Mitigate Transboundary Water Dispute' AARES 2021, Sydney, Australia. Hossen, M.A, Ahammed, F, & Connor, J 2021,
- 'Potential for benefit Sharing in GBM Basin' *Australian National Water Conference 2021* (Ozwater '21), Adelaide, Australia. Hossen, M.A, Ahammed, F, & Connor, J 2021,
- 'Water diversion and Ground Water inflow to the Teesta River' *Hydrology & Water Resources Symposium* (*HWRS21*), Virtual Symposium, Australia.

## Introduction

- There are more than 260 transboundary rivers in the world
- Traversing around 145 countries
- These rivers are cause of conflict
  - ➤Arab and Israel
  - ➢India and Pakistan
  - ►India and China
  - ➤America and Mexico
  - ► Nile, Mekong, and Amu Daria
- Management of rivers is important not for economy but also for peace


# Hydro-economic models (HEMs)

- HEMs are used to optimize benefits from river basin
- HEMs are also used to analyze water scarcity, drought, and water management problems.
- More than 300 HEMs have been developed worldwide
- Only 25 articles focused on transboundary river water disputes



### **HEMs related to transboundary issues**

- There are many HEMs for the Nile River that evaluate the river basin's water sharing disputes.
- There are few studies on the Murray-Darling River basin that relate to water sharing.
- HEMs are also relatively well developed on rivers between the USA and Mexico



Number of papers corresponding to River basins



## **HEMS on MDB**



Integrated hydrologic-economic modelling for analyzing water acquisition strategies in the Murray River Basin

Mohammed Mainuddin\*, Mac Kirby, M. Ejaz Qureshi

CSIRO Land and Water, GPO Box 1666, Canberra ACT 2601, Australia



Integrated hydrologic-economic modelling for analyzing water acquisition strategies in the Murray River Basin

Mohammed Mainuddin<sup>\*</sup>, Mac Kirby, M. Ejaz Qureshi CSIRO Land and Water, GPO Box 1666, Canberra ACT 2601, Australia



The Australian Journal of Agricultural and Resource Economics, 55, pp. 487-499

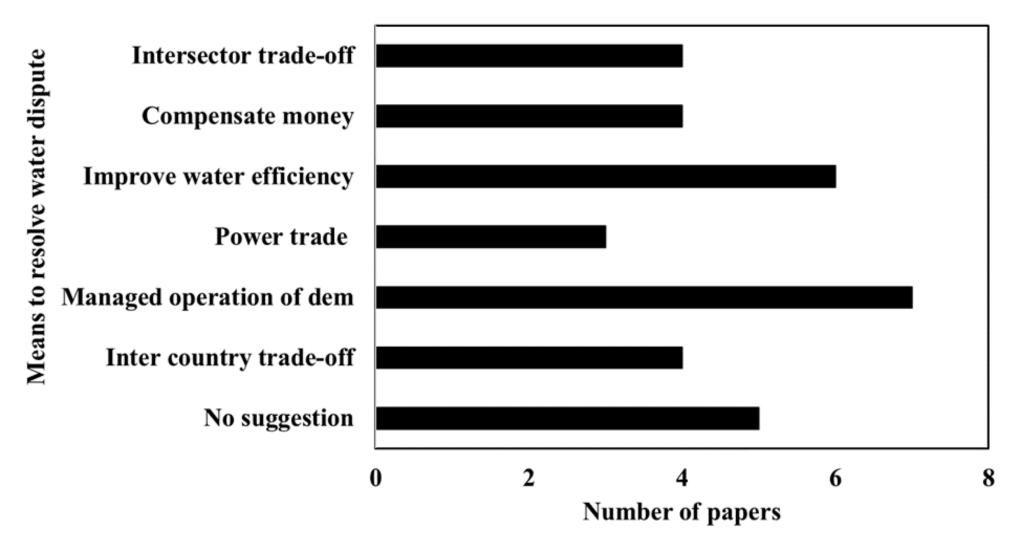
#### Economic effects of water recovery on irrigated agriculture in the Murray-Darling Basin\*

#### Journal of Hydrology 518 (2014) 120-129



Climate change and environmental water reallocation in the Murray–Darling Basin: Impacts on flows, diversions and economic returns to irrigation

J.M. Kirby <sup>a,\*</sup>, J. Connor <sup>b</sup>, M.D. Ahmad <sup>a</sup>, L. Gao <sup>c</sup>, M. Mainuddin <sup>a</sup>


<sup>a</sup> CSIRO Land and Water, Clunies Ross Street, Canberra, ACT 2601, Australia
<sup>b</sup> CSIRO Ecosystem Sciences, Waite Road, Adelaide, SA 5064, Australia
<sup>c</sup> CSIRO Land and Water, Waite Road, Adelaide, SA 5064, Australia



Activate Windows Go to PC settings to activate Windows.

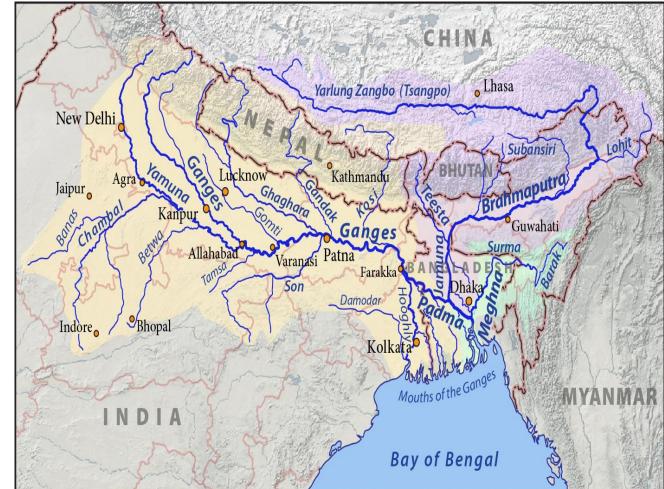
## **Dispute Resolution Proposal**

#### Number of papers corresponding to water dispute





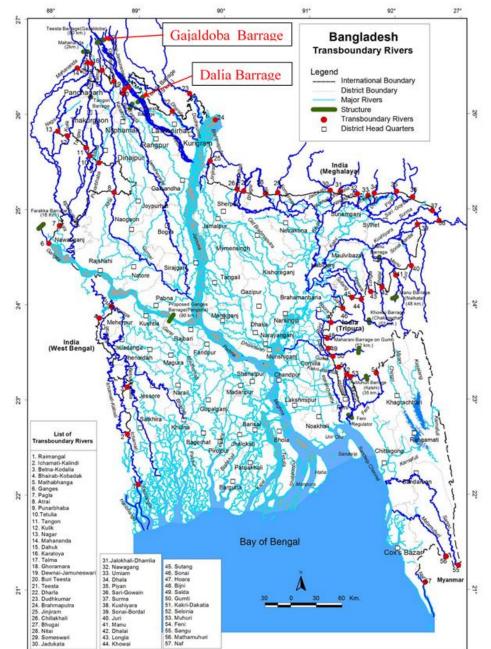
#### Teesta Hydro-Economic Model

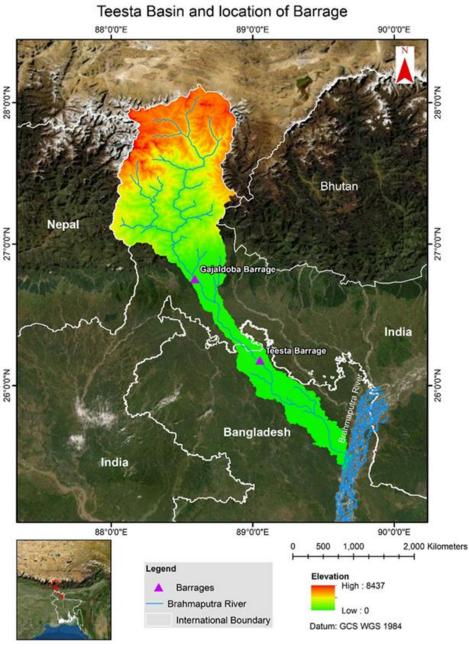

#### **Model Objective**

- To assess water available for agriculture, hydropower, navigation, domestic and e-flow
- Economic value of water for these use
- Assess the potential loss and gain for India and Bangladesh if water is shared



## **GBM River System**


- India, Nepal, Bhutan and Bangladesh share the Ganges– Brahmaputra–Meghna (GBM) system
- 93% of the GBM basin is located outside Bangladesh (FAO,2011)
- But 92% water pass through Bangladesh
- Being a downstream country, Bangladesh has no control over rivers




Ganges Brahmaputra Meghna (GBM) basin(source Google)



## India Bangladesh Water Dispute







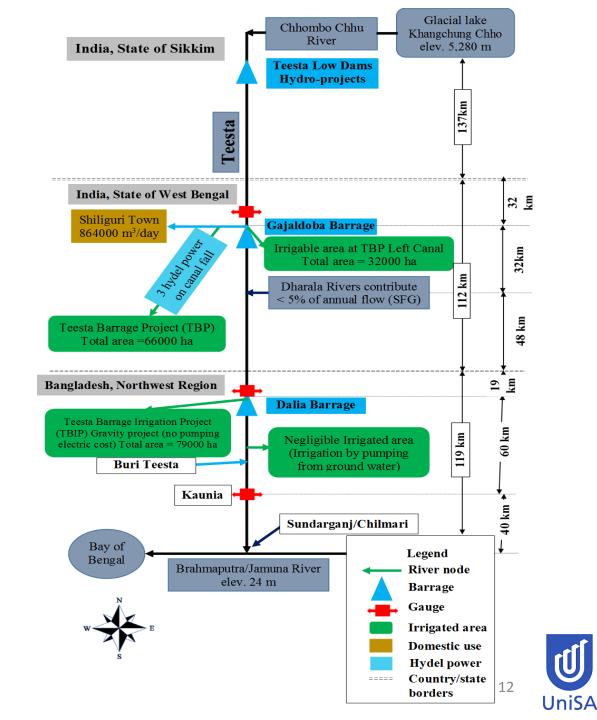
10

## **The Teesta Water Dispute**

- Drought and flood consecutively
- Fishermen, boatmen migrated to other areas/professions
- 21 millions people affected (Islam, 2016)
- Affecting agriculture, fisheries, navigation and environment








Flood



- The model was coded in General General Algebraic Modeling System (GAMS) which is a non-linear, optimization model.
- Max Z =  $\sum i, j, t$  BEN\_Ag  $i, j, t + \sum t$  BEN\_Hydrot,l +  $\sum i, t$  BEN\_Mt,l (4.1

U 0 Network Simplified



#### **Set** (Flows, Time, Crop, Locations)

| I un deux unders damp damp demp demp demp demp demp demp demp de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gamside: C:\Users\hosmy025\Documents\gamsdir\projdir\gmsproj.gpr - [D:\Sensitivity Cases\Case 1 Teesta HEM base 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gamside: C:\Users\hosmy025\Documents\gamsdir\projdir\gmsproj.gpr - [D:\Sensitivity Cases\Case 1 Teesta HEM base 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>Case I Teesta HEM base 2008/09 on 02.05.2020.tkl Case I Teesta HEM base 2008/09 o</pre>                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <pre>/// **********************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 🗁 🗒 🗞 💊 🙀 GAMS 🔄 🗹 (a) 🚳 🕒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table inflow(t,l) flow of the river by time and location<br>SETS<br>SETS<br>Table inflow(t,l) flow of the river by time and location<br>Setting<br>Condelim<br>Sinclude D:\Nydro-economic models\Teesta HEMS by GAMS\THEM\Inflowcum2008-05.cs<br>Sinclude C:\Lubin\game\indetacum.csv<br>Sinclude C:\Lubin\game\indetacum.csv<br>Sinclude C:\Lubin\game\indetacum.csv<br>Sinclude C:\Lubin\game\indetacum.csv<br>Sinclude C:\Lubin\game\indetacum.csv<br>Sinclude C:\Lubin\game\indetacum.csv<br>Sinclude C:\Lubin\game\indetacum.csv<br>Sinclude C:\Lubin\game\indetacum.csv<br>Sinclude C:\Lubin\game\indetacum.csv<br>Sinclude C:\Lubin\game\indetacum.csv<br>Soffdilm<br>Sonlisting:<br>Table gwflow(t,l) flow of the river by time and location<br>Sofflisting<br>Sondelim<br>Sinclude D:\Nydro-economic models\Teesta HEMS by GAMS\THEM\GWflowcum2008-05.cs<br>Sinclude C:\Lubin\game\indetacum.csv<br>Soffdelim<br>Sinclude D:\Nydro-economic models\Teesta HEMS by GAMS\THEM\GWflowcum2008-05.cs<br>Sinclude C:\Lubin\game\G#flowcum.csv<br>Soffdelim<br>Sinclude C:\Lubin\game\G#flow(t,l) + gwflow(t,l)) :<br>Parameter rev_f(t,l) = 0.2* (inflow(t,l) + gwflow(t,l)) :<br>Parameter rev_f(t,l) = 0.2* (inflow(t,l) + gwflow(t,l)) :<br>Parameter rev_f(t,l) = 0.2* (inflow(t,l) = get Rist ekhter Mollick, 2014<br>rev_f(t,l) = 351.005:<br>Parameter rev_f(t,l) = 0.4 gy pavigation benefit (US\$) for each cumec flow;<br>Soffdelim<br>Sinclude Si Parameter rev_f(t,l) = 0.4 gy pavigation benefit get Si Parameter rev_f( | Case 1 Teesta HEM base 2008-09 on 02.05.2020.lst Case 1 Teesta HEM base 2008-09 on 02.05.2020.gms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Case 1 Teesta HEM base 2008-09 on 02.05.2020.lst Case 1 Teesta HEM base 2008-09 on 02.05.2020.gms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <pre>t time / *if flow is less than 24 cum benefit is zero (Ref Riaz akhter Mollick, 2014) rev_n(t,l)= 34.56; / Parameter Dem_m(i) 10days Water demand of Shiliguri city in m3</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Casel Teesta HEM base 2008-09 on 02.05.2020.bt Case 1 Teesta HEM base 2008-09 on 02.05.2020.gms  Case 1 Teesta HEM base 2008-09 on 02.05.2020.gms | <pre>// // Table inflow(t,l) flow of the river by time and location Sofflisting Sondelim Sinclude D:\Hydro-economic models\Teesta HEMs by GAMS\THEM\Inflowcum2008-09.csv *Sinclude G:\University pc\PhD Research\Hydro-economic models\indatacum.csv \$Soffdelim Sonlisting; Table gwflow(t,l) flow of the river by time and location Sofflisting Sondelim Sinclude D:\Hydro-economic models\Teesta HEMs by GAMS\THEM\GWflowcum2008-09.csv *Sinclude c:\tuhin\gams\indatacum.csv Soffdelim Sonlisting; Parameter cetlow(t,l) minimum environmental flow that should be maintained ; eflow(t,l) = 0.2* (inflow(t,l) + gwflow(t,l)) ; Parameter rev_f(t,l) 10 days fisheries benefit(US\$) for each cumec flow; *For 60km length, Fisheries benefit =TK 72,616 per month per cumec flow=72616/( *If flow is less than 50 cumec, benefit is zero (Ref Rias akhter Mollick, 2014) rev_f(t,l)= 351.005; Parameter rev_n(t,l) 10 days navigation benefit(US\$) for each cumec flow; *For 60km length, Navigation benefit =TK 7150 per month per cumec flow=72616/(3* if flow is less than 24 cum benefit is zero (Ref Rias akhter Mollick, 2014) rev_n(t,l)= 34.56; Parameter mm(1) 10days Water demand of Shiliguri city in m3 *Population in 2011 5,13,264. Total Water required fo 10 days (135*5,13,264*10) </pre> |
| T_Dem_m(i,t) \$ (ord(t) le 12) = Dem_m(i);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2008Dec01<br>2008Dec02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>T_Dem_m(i,t) \$ (ord(t) gt 12) = Dem_m(i) * (1 + .03);<br/>display T_dem_m;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Parameter (known values)

#### Parameter

| TST_idi.Boro_IN         85         125         156         325         350         400         100           TST_idi.Wheat_IN         6.5         25         37.5         80.5         86         100         28           TST_idi.Wheat_IN         6.5         25         37.5         80.5         86         100         28           TST_idi.Wteat_IN         6.5         25         37.5         80.5         86         100         28           TST_idi.Wteg_IN         15.5         25         40         90         92.5         109         26           TST_idb.Boro_BD         35         75         132.75         300         350         375         81           TST_idb.Wheat_BD         6.5         10         12.5         30.5         45.5         75.5         23           TST_idb.Potato_BD         15.5         25         40         90         100         109         26           TST_idb.Wteg_BD         15.5         25         40         90         100         109         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |              | ICICY /      |               |                |               |              | arameter F_Den_m  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|--------------|---------------|----------------|---------------|--------------|-------------------|
| Intercept_a('TST_mds',t)=mw_price_l0('TST_mds')+slope_elasticity('TST_mds',t)*T_Dem_m('TST_mds')<br>Display Intercept_a:<br>Table Wd_cr(1,j,t) Total crop water demand (m3 per hectre) for 10 days period<br>'source for india: The status of water resources in West Bengal by Kalyan Rudrs, 2017<br>'source for BD TBIP project authority(Amlesh, agriculture officer) and mullick et all 2010<br>2008Nov01 2008Nov02 2008Nov03 2008Dec01 2008Dec02 2008Dec03 20<br>TST_idi.Boro_IN 85 125 156 325 350 400 10<br>TST_idi.Wheat_IN 6.5 25 37.5 80.5 86 100 226<br>TST_idi.Potato_IN 6.5 25 37.5 80.5 86 100 226<br>TST_idi.Wteg_IN 15.5 25 40 90 92.5 109 24<br>TST_idb.Boro_BD 35 75 132.75 300 350 375 81<br>TST_idb.Meat_BD 6.5 10 12.5 30.5 45.5 75.5 23<br>TST_idb.Wheat_BD 15.5 25 40 90 100 109 246<br>TST_idb.Wteg_BD 15.5 25 40 90 100 109 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |              |              | 1413          | r) a price iv  | reservery p(  |              |                   |
| Display Intercept_a:           Table Wd_cr(1,j,t)         Total crop water demand (m3 per hectre) for 10 days period           'source for india: The status of water resources in West Bengal by Kalyan Rudra, 2017           'source for BD TBIP project authority(Amlesh, agriculture officer) and mullick et all 2010           2008Nov01         2008Nov02         2008Nov03         2008Dec01         2008Dec02         2008Dec03         20           TST_idi.Boro_IN         85         125         156         325         350         400         100           TST_idi.Wheat_IN         6.5         25         37.5         80.5         86         100         26           TST_idi.Worg_IN         6.5         25         37.5         80.5         86         100         26           TST_idi.Worg_IN         15.5         25         40         90         92.5         109         26           TST_idb.Boro_BD         35         75         132.75         300         350         375         61           TST_idb.Wheat_BD         6.5         10         12.5         30.5         45.5         75.5         23           TST_idb.Wheat_BD         15.5         25         40         90         100         109         26                                                                                                                                                                                                                                                                                                                      | s'.t);  | Dem m('TST m | mds',t) *T   | aticity('TST  | is')+slope ela | ce 10('TST m  | -            |                   |
| Table Wd_cr(i,j,t)         Total crop water demand (m3 per hectre) for 10 days period           'source for india: The status of water resources in West Bengal by Kalyan Rudra, 2017           'source for BD TBIP project authority(Amlesh, agriculture officer) and mullick et all 2010           2008Nov01         2008Nov02         2008Nov03         2008Dec01         2008Dec02         2008Dec03         20           TST_idi.Boro_IN         85         125         156         325         350         400         100           TST_idi.Woeat_IN         6.5         25         37.5         80.5         86         100         26           TST_idi.Woeg_IN         15.5         25         40         90         92.5         109         26           TST_idb.Wreg_ID         35         75         132.75         30.0         350         375         81           TST_idb.Wreg_BD         15.5         25         40         90         100         105         24           TST_idb.Wreg_BD         15.5         25         40         90         100         105         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |              |              |               |                |               |              |                   |
| *source for BD TBIP project authority(Amlesh, agriculture officer) and mullick et all 2010<br>2008Nov01 2008Nov02 2008Nov03 2008Dec01 2008Dec02 2008Dec03 20<br>TST_idi.Boro_IN 85 125 156 325 350 400 10<br>TST_idi.Wheat_IN 6.5 25 37.5 80.5 86 100 28<br>TST_idi.Potato_IN 6.5 25 37.5 80.5 86 100 28<br>TST_idi.Boro_BD 35 75 132.75 300 350 375 81<br>TST_idb.Boro_BD 35 75 132.75 30.5 45.5 75.5 23<br>TST_idb.Potato_BD 15.5 25 40 90 100 109 26<br>TST_idb.Potato_BD 15.5 25 40 90 100 109 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |              | iays period  | tre) for 10 d | d (m3 per hect | water demand  |              |                   |
| 2008Nov01         2008Nov02         2008Nov03         2008Dec01         2008Dec03         2008Dec03 <t< th=""><th></th><th>2017</th><th>lyan Rudra,</th><th>Bengal by Re</th><th>urces in West</th><th>of water reso</th><th>The status o</th><th>ource for india:</th></t<> |         | 2017         | lyan Rudra,  | Bengal by Re  | urces in West  | of water reso | The status o | ource for india:  |
| TST_idi.Boro_IN         85         125         156         325         350         400         100           TST_idi.Wheat_IN         6.5         25         37.5         80.5         86         100         28           TST_idi.Wheat_IN         6.5         25         37.5         80.5         86         100         28           TST_idi.Wheat_IN         6.5         25         37.5         80.5         86         100         28           TST_idi.Wheat_IN         15.5         25         40         90         92.5         109         26           TST_idb.Boro_BD         35         75         132.75         300         350         375         81           TST_idb.Wheat_BD         6.5         10         12.5         30.5         45.5         75.5         23           TST_idb.Foctato_BD         15.5         25         40         90         100         109         26           TST_idb.Wveg_BD         15.5         25         40         90         100         109         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | t all 2010   | nd mullick e | e officer) an | h, agriculture | hority(Amles  | project aut  | ource for BD TBIP |
| TST_idi.Boro_IN         85         125         156         325         350         400         100           TST_idi.Wheat_IN         6.5         25         37.5         80.5         86         100         28           TST_idi.Wheat_IN         6.5         25         37.5         80.5         86         100         28           TST_idi.Wheat_IN         6.5         25         37.5         80.5         86         100         28           TST_idi.WVeg_IN         15.5         25         40         90         92.5         109         26           TST_idb.Boro_BD         35         75         132.75         300         350         375         81           TST_idb.Wheat_BD         6.5         10         12.5         30.5         45.5         75.5         23           TST_idb.Forato_BD         15.5         25         40         90         100         109         26           TST_idb.Wveg_BD         15.5         25         40         90         100         109         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |              |              |               |                |               |              |                   |
| TST_idi.Wheat_IN         6.5         25         37.5         80.5         86         100         28           TST_idi.Potato_IN         6.5         25         37.5         80.5         86         100         28           TST_idi.Potato_IN         6.5         25         37.5         80.5         86         100         28           TST_idi.Wveg_IN         15.5         25         40         90         92.5         109         26           TST_idb.Boro_BD         35         75         132.75         300         350         375         81           TST_idb.Wheat_BD         6.5         10         12.5         30.5         45.5         75.5         23           TST_idb.Foctato_BD         15.5         25         40         90         100         109         26           TST_idb.Wveg_BD         15.5         25         40         90         100         109         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2009Jan | 2008Dec03    | 2008Dec02    | 2008Dec01     | 2008Nov03      | 2008Nov02     | 2008Nov01    |                   |
| TST_idi.Potato_IN         6.5         25         37.5         80.5         86         100         26           TST_idi.WVeg_IN         15.5         25         40         90         92.5         109         26           TST_idb.Boro_BD         35         75         132.75         300         350         375         81           TST_idb.Boro_BD         6.5         10         12.5         30.5         45.5         75.5         23           TST_idb.Fotato_BD         15.5         25         40         90         100         109         26           TST_idb.WVeg_BD         15.5         25         40         90         100         109         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000    | 400          | 350          | 325           | 156            | 125           | 85           | [_idi.Boro_IN     |
| TST_idi.WVeg_IN         15.5         25         40         90         92.5         109         26           TST_idb.Boro_BD         35         75         132.75         300         350         375         81           TST_idb.Mteat_BD         6.5         10         12.5         30.5         45.5         75.5         23           TST_idb.Fotato_BD         15.5         25         40         90         100         109         26           TST_idb.WVeg_BD         15.5         25         40         90         100         109         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 280     | 100          | 86           | 80.5          | 37.5           | 25            | 6.5          | [_idi.Wheat_IN    |
| TST_idb.Boro_BD         35         75         132.75         300         350         375         81           TST_idb.Wheat_BD         6.5         10         12.5         30.5         45.5         75.5         23           TST_idb.Potato_BD         15.5         25         40         90         100         109         26           TST_idb.Wveg_BD         15.5         25         40         90         109         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 280     | 100          | 86           | 80.5          | 37.5           | 25            | 6.5          | [_idi.Potato_IN   |
| TST_idb.Wheat_BD         6.5         10         12.5         30.5         45.5         75.5         23           TST_idb.Potato_BD         15.5         25         40         90         100         109         26           TST_idb.Wveg_BD         15.5         25         40         90         100         109         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 260     | 109          | 92.5         | 90            | 40             | 25            | 15.5         | [_idi.WVeg_IN     |
| TST_idb.Fotato_BD 15.5 25 40 90 100 109 26<br>TST_idb.WVeg_BD 15.5 25 40 90 109 109 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 814     | 375          | 350          | 300           | 132.75         | 75            | 35           | [_idb.Boro_BD     |
| TST_idb.WVeg_BD 15.5 25 40 90 100 109 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 230     | 75.5         | 45.5         | 30.5          | 12.5           | 10            | 6.5          | [_idb.Wheat_BD    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 260     | 109          | 100          | 90            | 40             | 25            | 15.5         | f idb.Potato BD   |
| TST_idb.Tobacco_BD 0 0 0 0 57 100 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 260     | 109          | 100          | 90            | 40             | 25            | 15.5         | [_idb,WVeg_BD     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 240     | 100          | 57           | 0             | 0              | 0             | 0            | [_idb.Tobacco_BD  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |              |              |               |                |               |              |                   |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |              |              |               |                |               |              |                   |
| 1:1 Insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |              |              |               |                |               |              | 10000             |

#### Variables (Unknown values)

🚝 gamside: C:\Users\hosmy025\Documents\gamsdir\projdir\gmsproj.gpr - [D:\Sensitivity Cases\Case 1 Teesta HEM base 2008-09 on 02.05.2020.gms]

File Edit Search Windows Utilities Model Libraries Help

🗁 🗒 🍇 📎 🗞 GAMS 🔹 (a) 🎒 🔖

Case 1 Teesta HEM base 2008-09 on 02.05.2020.lst Case 1 Teesta HEM base 2008-09 on 02.05.2020.gms

| PARAMETER                                              |
|--------------------------------------------------------|
| * * * * * * * * * * * * * * * * * * * *                |
| * Land Block: land in irrigation is measured in ha     |
|                                                        |
|                                                        |
| LANDRHS_t(i) Total cultivable land                     |
| / -                                                    |
| TST idi 66000                                          |
| TST idb 79000                                          |
| -                                                      |
| 1                                                      |
| *********Section 3************************************ |
| Variables                                              |
| Z Total benefit                                        |
| TWD cr(i,j,t) Total water demand in m3 for each crop   |
| REV ag(i,j,t) Revenue from each crop                   |
|                                                        |

Hectre\_country(i,t)

#### Positive variables

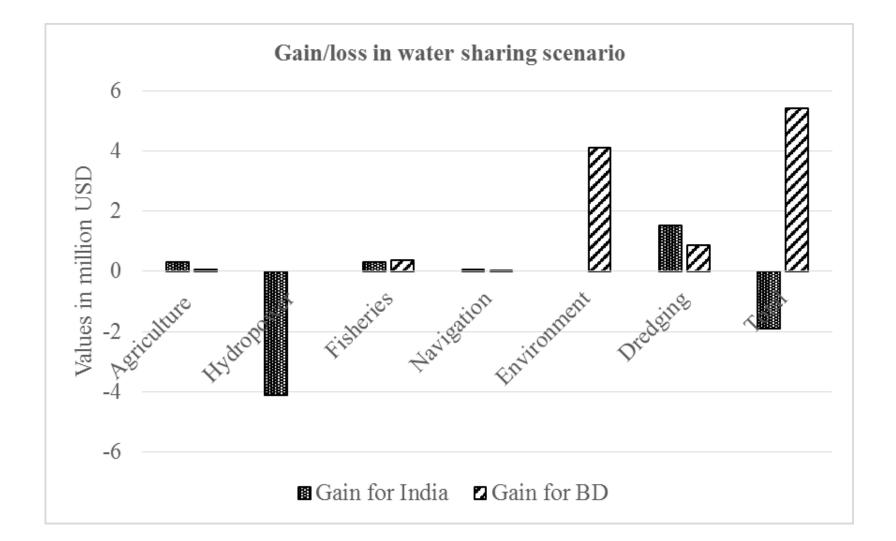
|                  | -                                                                     |
|------------------|-----------------------------------------------------------------------|
| HECTRES_V(i,j,t) | agricultural land                                                     |
| Outflow(t,1)     | Outflow from the node                                                 |
| T_GWflow_Vol(1)  |                                                                       |
| *TWDiv_cr(i,j,t) | total water divert for each crop                                      |
| GWP_cr(i,j,t)    | total Ground Water pumped in m3 for each crop                         |
| RWD_cr(i,j,t)    | total water demand met by river water in m3 from Teesta for each crop |
| T_GWP(1)         | Total area irrigated by ground water                                  |
| T_RWD(1)         | Total area irrigated by surface or river water                        |
| T_WD(i)          |                                                                       |

## **Equations**

| File Edit Search Windows U                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                  | - 8                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| CAHS                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |                                     |
| te 1 Teesta HEM base 2008-09 on 02.0                                                                                                                           | 6.2020.ht Case 1 Teesta HEM base 2008.09 on 02.05.2020.gm                                                                                                                                                                                                                                                                                        |                                     |
| T_Ben_fish(1)<br>G_T_Ben_fish<br>Total_Vol_Outflow(1).                                                                                                         | <pre>T_BEN_f(1)=e=sum((t),Ben_f(t,1));<br/>G_T_BEN_f=e=sum((1),T_BEN_f(1));<br/>T_Vol_Outflow(1)=e=10*24*3600*sum(t,Outflow(t,1));</pre>                                                                                                                                                                                                         | ,                                   |
| Ben_navigation(t,l)<br>T_Ben_navigation(l)<br>G_T_Ben_navigation<br>'Therefore the environm                                                                    |                                                                                                                                                                                                                                                                                                                                                  |                                     |
| <pre>Ben_dredging_In(t,1).<br/>T_Ben_dredging_In(1).<br/>Sen_dredging_Bd(t,1).<br/>T_Ben_dredging_Bd(1).<br/>Ben_municipal(i,t)<br/>T_Ben_municipal(i,t)</pre> | <pre>. T_Ben_dredg_In('Gajaldoba')=e=sum((t),Ben_dredg_In(t,'Gajaldoba'));<br/>. Ben_dredg_Bd(t,'Dalia') =e= Ben_dredging(t)'Inflation_Factor(t)'outflow(t,'Dalia')/(inflow(t,'Gajaldoba')+gwflow(t,'Dalia'));<br/>. T_Ben_dredg_Bd('Dalia')=e=sum((t),Ben_dredg_Bd(t,'Dalia'));</pre>                                                           |                                     |
| *Obj., Z=E= G_T_BEN_<br>* Obj., Z=E= sum[t,                                                                                                                    | <pre>G_T_Ben_In===T_BEN_f('Gajaldoba')+T_BEN_ag('idi')+T_BEN_m('TST_mds')+T_BEN_bydro;<br/>ag + T_BEN_bydro+T_BEN_m('TST_mds');<br/>ag + T_BEN_hydro+T_BEN_m('TST_mds');<br/>sum(1,T_Ben_f(t,1)) + sum(1,T_Ben_n(t,1))+ T_Ben_m(t)]+ I_Ben_ag;</pre>                                                                                             |                                     |
| MODEL Teesta<br>/obj, Land, GMP_crop, TW<br>G_T_BEN_agri, Ben_hydr                                                                                             |                                                                                                                                                                                                                                                                                                                                                  | Ben_navigation, G_T_Ben_navigation, |
| T_Nydro_div_v.1, BEN_f.                                                                                                                                        | <pre>x.1, Turb.1,GWP_cr.1, RWD_cr.1,Outflow.1, REV_ag.1,PRO_hydro.1, HECTRES_v.1,T_GWP.1,T_RWD.1,T_WD.1, BEN_ag.1,T_BEN_ag.1,G_T_BEN_ag.1,<br/>1,T_BEN_f.1, G_T_BEN_f.1,T_V01_Outflow.1, T_GWflow_V01.1, T_BEN_n.1,G_T_BEN_n.1, BEN_n.1, Ben_env_Bd.1,T_Ben_env_Bd.1,Ben_env_In.1,<br/>edg_In.1, T_Ben_dredg_In.1, Z.1,BEN_m.1, T_BEN_m.1;</pre> |                                     |

## **Scenario Development**

| Scenario                                             | Water sharing                                                                    |
|------------------------------------------------------|----------------------------------------------------------------------------------|
| 1(Baseline/Current)                                  | 70% for India, 30% for BD, 0% for river flow                                     |
| 2 (Water Sharing<br>Scenario, Proposed<br>agreement) | 40% for India, 40% for BD, 20% for river flow.<br>India will maximize hydropower |
|                                                      |                                                                                  |


Potential loss and gain for both BD and India was computed



## **Result Hydro-Economic Model(Value in US\$)** Hydropower loss is 16.25 MWh for 6 months (70.2GWh)

|             |                            |            | Values are                              | in 2019 th | ousand USD |             |
|-------------|----------------------------|------------|-----------------------------------------|------------|------------|-------------|
|             | Base Scenario<br>(2008-09) |            | rio Water Sharing<br>Scenario (2008-09) |            | Gain for   | Gain for BD |
|             | India                      | BD         | India                                   | BD         | India      |             |
| Agriculture | 32,555                     | 42,241     | 32,875                                  | 42,311     | 320        | 70          |
| Hydropower  | 5,817                      | -          | 1,761                                   | -          | - 4,056    | -           |
| Domestic    | 688                        | -          | 688                                     | -          | -          | -           |
| Fisheries   | 97                         | 1,630      | 414                                     | 1,989      | 317        | 359         |
| Navigation  | 29                         | 194        | 80                                      | 234        | 51         | 41          |
| Environment | -                          | 29,968     | -                                       | 34,078     | -          | 4,110       |
| Dredging    | 2,385                      | 2,970      | 3,889                                   | 3,833      | 1,504      | 862         |
| Total       | 41,571                     | 77,003     | 39,707                                  | 82,445     | - 1,864    | 5,442       |
|             | Basin-wi                   | ide Gain ( | if water is s                           | hared)     |            | 3,578       |

## **Comparison of benefit for two scenario**



# Conclusion

- There is potential for a trade-off between hydropower use in India, and environmental use in Bangladesh.
- There is no point of killing a river for 16.25 MW electricity
- Bd may offer India installing solar energy power plant to minimize hydropower loss (22.5MW).



## **Thank You**



#### Teesta Barrage India



Teesta Barrage Bangladesh

