In-Paddock Delivery of Methane Inhibitors for Pasture-based Dairy: An Economic Analysis Incorporating Scenario Planning

Marmont, Silva-Villacorta, Dorner, Eastwood, Minnee & Neal

NEW ZEALAND AGRICULTURAL GREENHOUSE GAS Research Centre

Dairynz≝

Methane and New Zealand Dairy

Methane Inhibitors

SPOTLIGHT

DSM gets market authorisations for Bovaer® feed additive for beef & dairy in Brazil & Chile

In-Paddock Smart-Feeders

Research Questions

- What is the breakeven methane price of this mitigation approach?
- How does this approach perform in different farm systems?

Implementation Costs

Method

Farm Descriptors

- Develop farm financial performance model
- Scale to reflect inhibitor delivery costs
- Determine breakeven
 methane price

Region	Waikato
Effective hectares	109
Peak cows milked	310
Kg milksolids sold	121,500
Payout Received (\$/kg MS)	7.00

Assumptions

Mitigation levels equivalent to those of TMR systems can be achieved

A 'premium' pelleted supplement is required for dispensation

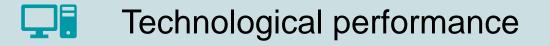
Ability to purchase supplement with inhibitor included in NZ

Scenario Analysis

Waikato								
	Description			Costs				
Scenario	Inhibitor Effectiveness	Methane Reduction	Delivery Cost	Supplement	Additional FTE	Machine Rental/ month	Forgone Pasture Utilisation	
Unfavourable	Low	15%	Highest	\$900/t	\$66,000	\$1,500	16.3%	
Expected	Medium	30%	Medium	\$700/t	\$61,000	\$1,000	7.5%	
Favourable	High	90%	Low	\$500/t	\$56,000	\$800	1.9%	
In-shed only	Lowest	5%	Lowest	\$900/t	-	-	0.0%	

Preliminary Results

Waikato Example with ETS pricing



Farm system paradigm shift

Uncertainty (price and availability)

Implications

- Viable in optimistic cases
- Many challenges
- Inhibitor and smartfeeder manufacturers are being fed back these findings
- Not a silver bullet

