

Nitrogen Leaching & GHG Emissions

Critical Pathways Programme

Phil Journeaux

Lincoln Agritech Team

There is a report:

https://lincolnagritech.co.nz/wpcontent/uploads/2023/12/Economics-of-Attenuation-Rates-in-the-Piako-and-Waiotapu-Catchments.pdf

Objectives

- To model the nitrogen loading from farms
- To consider the economic cost of reducing N loading
- To consider greenhouse gas implications & the relationship between GHG & N leaching mitigation
- To calculate the net benefit of reducing nitrogen yields into groundwater

Farm Modelling

- Done via Farmax and Overseer
- 5 farms modelled in Piako, 6 in Waiotapu
- Various scenarios modelled, to compare the results against the base farm
- N attenuation rates based on 3-year measurements by Lincoln Agritech

Catchment Level NO₃-N Yields

Journeaux Economics

Results: Waiotapu (weighted average)

	EBITDA (\$/ha)	% Reduction relative to base	N loss (kg N/ha)	% Reduction relative to base	GHG Emissions (T CO ₂ e/ha)	% Reduction relative to base
Base	\$4,539		46		10.6	
No N Fertiliser	\$4,125	-9%	36	-22%	9.3	-12%
¹ / ₂ Supplements	\$4,251	-6%	47	1%	10.4	-2%
Reduce SR 10%	\$4,446	-2%	43	-6%	9.9	-6%
Wintering Pad	\$4,385	-3%	42	-9%	10.7	1%
SR10 + Pad	\$4,292	-5%	39	-15%	10.0	-5%

Results: Piako (weighted average)

	EBITDA (\$/ha)	% Reduction relative to base	N loss (kg N/ha)	% Reduction relative to base	GHG Emissions (T CO ₂ e/ha)	% Reduction relative to base
Base	\$3,048		23.2		8.3	
No N Fertiliser	\$2,874	-6%	19.8	-15%	7.2	-13%
¹ / ₂ Supplements	\$2,911	-4%	23.7	2%	8.2	-2%
Reduce SR 10% (SR10)	\$3,326	9%	22.6	-2%	8.0	-3%
Wintering Pad	\$2,888	-5%	21.4	-8%	8.5	2%
SR10 + Pad	\$3,166	4%	20.7	-11%	8.2	-2%

Influence of Attenuation Rates

	Scenario#1		Scena	Scenario#2	
	Before	After	Before	After	
Kg N/ha loss (load)	30	25	30	25	
Attenuation	40%	40%	60%	60%	
N lost to attenuation (kg N/ha)	12	10	18	15	
Delivered load (to water - kg N/ha))	18	15	12	10	
Farm FBITDA (\$/ha)	\$3 500	\$2 500	\$3.500	\$2 500	
Cost to reduce N loss (\$/kg N)	<i>45,</i> 2 <i>00</i>	\$333	<i>\\\\\\\\\\\\\</i>	\$500	

Cost Benefit Analysis

Slight problem – could cost the N loss, but no data/value on the benefits

Used Marsh (2010) as a proxy – choice modelling on WTP to improve WQ of Karapiro & Arapuni hydro lakes (WTP/household = \$86)

Scenario 1: Reduce N loading by 20%

Scenario 2: Reduce N loading by same absolute amount for both catchments

	Farm cost (\$/ha)	NPV (\$ million)	Breakeven WTP per Household	
Scenario 1	-107	-285	311	
Scenario 2	237	-763	688	

Key Lessons

- (i) Data OK at a sub/catchment level, but not sufficient to do an analysis at a farm level
- (ii) Possibly extrapolated to a regional level, but not to a national level
- (iii) Possible to determine attenuation rates & put a cost on N leaching
- (iv) The cost of reducing delivered N loads is very much driven by farm profitability, which varies widely from farm to farm
- (v) Lag periods in N attenuation very important, & a methodology needs to be developed to differentiate lag times from attenuation rates
- (vi) Cost/benefit analysis needs data on both sides of the equation

