The Value of Phosphorus Fertiliser to the New Zealand Economy

Phil Journeaux, Garry McDonald, Sandy Scarrow, Stuart Ford, Doug Edmeades

There is a report:

https://www.fertiliser.org.nz/Site/research/ projects/value-of-phosphorus-2024.aspx

Commissioned by the Fertiliser Association of NZ

Objective

To determine the value of phosphorus fertiliser to the NZ economy, based on a with/without comparison - what is the impact if NZ did not have access to P fertilisers?

Methodology: - models set up to represent

Dairy	Sheep & Beef	Horticulture	Arable/Vegetable
Northland	North Island Hill Country	Kiwifruit	Forage Brassica
Waikato/Bay of Plenty	North Island Intensive	Pipfruit	Cereal Grain
Taranaki	South Island Hill Country	Viticulture	Green Leafy Vegetables
Canterbury	South Island Intensive	Summerfruit	Root Vegetables
Southland			

Olsen P

Pasture growth under high and low fertility levels

Results – Pastoral Agriculture

	Reduction in Production	Reduction in Farmgate EBITDA Per farm	National Impact (\$ billion)
Dairy	63%	\$463,000 (92%)	\$5.00
Sheep & Beef	46%	\$99,183 (32%)	\$0.90
Total			\$5.90

All the individual farm models were uneconomic – so would get restructured into larger more extensive farms

Results – Pastoral Agriculture#2

	Reduction in Nitrate Leaching	Reduction in Phosphorus Loss	Reduction in GHG Emissions
Dairy	56%	36%	59%
Sheep & Beef	42%	26%	44%

Results - Horticulture

	Pipfruit	Kiwifruit	Viticulture	Summerfruit	Other Hort
Production reduction	25%	25%	5%	15%	10 %
Reduction in GM (\$/ha)	\$13,927	\$24,807	\$1,786	\$9,753	\$8,774
Extrapolated to a national level	\$155.800.000	\$359.700.000	\$74.700.000	\$23.500.000	\$92.300.000

Total reduction in Orchard gate profit is \$706 million

Results – Arable/Vegetable

Land use	Area of crop grown.	Net loss in EBITDA	Loss in EBITDA
	(ha)	(\$/ha)	(\$m)
Leafy Green Vegetables	27,466	14,112	388
Root Vegetables	15,459	6,659	103
Cereal Grain	180,000	2,705	487
Forage Brassica	239,875	1,909	458
Total			1,436

Results – Farmgate Summary

	\$ Billion
Pastoral	5.9
Horticulture	0.7
Arable/Vegetable	1.4
Total	8.0

Macro Analysis

Used Input/output - Gross Output, Value Add (GDP), and Employment

- Gross Output reduces by \$44 billion (5.5% of NZ total)
- Value Add (GDP) reduces by \$14.2 billion (6.3% NZ total)
- Employment reduces by 161,210 MECs (6.7% NZ total)

Impact on exports:

- (i) Farm-level extrapolation reduction = \$24.8 billion (54%)
- (ii) I/O analysis reduction = \$25.8 billion

Time for Olsen P levels in soil to revert to "natural" level

Limited data available on pastoral situation, basically none for horticulture and arable.

Estimate for decline of current Olsen P levels down to ~5 are:

- Pastoral: 20-30 years
- Arable: 7-8 years
- Horticulture: 7-8 years

Alternatives for P Fertiliser

Potentially:

- Animal manures pig (170,000 tonnes), poultry (346,000 tonnes)
- Composts (amount n/a)

kg of P supplied/ha	20	30	40	50
Superphosphate (kg/ha)	222	333	444	556
Pig Slurry (kg/ha)	10,000	15,000	20,000	25,000
Poultry Litter (kg/ha)	1,111	1,667	2,222	2,778
Commercial Compost (Fresh) (kg/ha)	6,667	10,000	13,333	16,667

Alternatives - Cost

kg of P supplied/ha	20	30	40	50
Superphosphate	\$100	\$150	\$200	\$250
Pig Slurry	\$635	\$953	\$1,270	\$1,588
Poultry Litter (South Island)	\$88	\$132	\$176	\$219
Poultry Litter (North Island)	\$167	\$250	\$333	\$417
Commercial Compost	\$567	\$850	\$1,133	\$1,417

Certainly potential to use alternatives in horticulture & arable – which is already happening

•Questions