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Promoting sustainable agrifood production under climate change: practices and 1 

outcomes 2 

Abstract 3 

Climate change is challenging sustainable agrifood production and food security, and 4 

encouraging farmers’ climate change adaptation can help promote sustainable agrifood 5 

production and ensure food security. This study investigates farmers’ climate change adaptation 6 

and its impact on agrifood production. We employ the propensity score matching (PSM) model 7 

to address the selection bias issue of climate change adaptation and estimate the survey data 8 

collected from 415 rice-producing households in rural China. We also estimate the inverse 9 

probability weighted regression adjustment (IPWRA) model for robustness check. The 10 

empirical results show that farmers’ decisions on climate change adaptation are influenced by 11 

household heads’ age, education level, life satisfaction, temperature perception, and 12 

transportation conditions. The treatment effect estimations of the PSM model reveal that 13 

climate change adaptation significantly increases land productivity by 41.24-44.29% and labor 14 

productivity by 55.06-63.72% in rice production. The IPWRA model estimation largely 15 

confirms the robustness of the PSM model estimation. We also find that climate change 16 

adaptation significantly increases the net returns of rice production. These findings have 17 

significant global implications. By understanding the factors influencing farmers’ decisions to 18 

adapt to climate change, policymakers worldwide can design targeted interventions to 19 

encourage similar practices in other regions. Promoting farmers’ climate change adaptation to 20 

increase farm productivity is crucial for ensuring global food security in the face of ongoing 21 

climate challenges. 22 
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1 Introduction 26 

The global agrifood system comprises food production, processing, packing, storage, 27 

transportation, retail, consumption, loss, and waste (Heydari, 2024; IPCC, 2019). To be 28 

sustainable, the agrifood system is expected to meet the food demand of the present and future 29 

generations while maintaining profitability and reducing environmental pollution. Sustainable 30 

agrifood production is the origin and prerequisite of the whole agrifood system. It is critical to 31 

overcome the conflict between population growth and natural resources, reduce adverse 32 

environmental influences, and ensure global food supply (McGreevy et al., 2022). However, 33 

climate change events, such as extreme droughts and heat, frequent floods, and irregular 34 

precipitation patterns, have challenged sustainable agrifood production (Bryan et al., 2024; 35 

IPCC, 2023; Maggio et al., 2022). It is reported that, in Mauritania, the 2014 drought led to an 36 

11.9% lower per capita consumption and an 8.9% higher likelihood of falling below the poverty 37 

line (Ba and Mughal, 2022). Chen and Gong (2021) found that extreme heat reduces China’s 38 

agricultural total factor productivity and input utilization in the short run, resulting in a more 39 

negative effect on yield. Therefore, it is crucial to address the challenges of climate change for 40 

the agrifood sector.  41 

In practice, farmers are switching from outdated practices to climate-resilient technologies 42 

to adapt themselves to the changing climate and achieve sustainable agrifood production goals. 43 

The climate-resilient technologies adopted by farmers include, for example, minimum tillage 44 

and zero tillage, diversifying seeds and crops, integrated pest management, and applying 45 

organic fertilizer and farmyard manure (Amadu et al., 2020; Asmare et al., 2022; Autio et al., 46 

2021; Bairagi et al., 2020; Bhatta et al., 2022; Zheng et al., 2024). As emphasized by the Food 47 

and Agriculture Organization (FAO), these “climate-smart” strategies are expected to achieve 48 

or even synergize three objectives: (a) sustainably increasing agricultural productivity and 49 

incomes, (b) adapting and building resilience to climate change, and (c) reducing greenhouse 50 
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gas emissions.  51 

Recent studies have provided evidence of the positive influences of climate change 52 

adaptations on crop yield and farm income (Asmare et al., 2022; Gorst et al., 2018; Khanal et 53 

al., 2018; Wang et al., 2022). They mainly focus on yield and income effects, measuring yield 54 

and income based only on returns to land. Nevertheless, research gaps remain. Because 55 

investments in climate-smart practices are associated with additional capital and labor inputs 56 

and household labor division, climate change adaptations may also influence labor demand and 57 

returns to labor (Hörner and Wollni, 2022). Sesmero et al. (2018) found that adverse weather 58 

history prompts households to work more on maize cultivation on their farms in Malawi. To 59 

date, it is unclear whether adaptation to climate change can contribute to returns to labor in 60 

agrifood production.  61 

This study extends the findings of existing literature by examining farmers’ climate change 62 

adaptation and its impact on agrifood production. Climate change adaptation is captured by 63 

whether or not a farming household has adopted improved varieties and/or soil and water 64 

conservation practices. We utilize survey data from 415 rural households that participated in 65 

rice production in China. China’s rice sector is facing challenges from the increasing 66 

temperature. Chen and Chen (2018) reported that global warming would decrease the average 67 

rice yield in China by 10-19% by 2050. In addition, the world population is expected to reach 68 

9.1 billion by 2050; meanwhile, food production is expected to increase by 70% (FAO, 2009). 69 

To feed the world, it is said that 90% of growth in crop production globally should come from 70 

higher crop yield and increased production intensity (FAO, 2009). To improve crop yield, it is 71 

essential to understand whether rice farmers’ adaptations to climate change can effectively help 72 

improve agrifood production.  73 

 This study’s originality includes three aspects. First, we examine two indicators of 74 

agrifood production from the perspective of factor returns: land productivity and labor 75 
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productivity. Diverging from existing studies that primarily concentrate on crop yield or land 76 

productivity alone (Arslan et al., 2015; Khanal et al., 2018; Wang et al., 2022), our study 77 

integrates labor productivity, a facet often overlooked. Agricultural labor productivity captures 78 

rural households’ labor allocation and returns to farming (Restuccia, 2016; Zhang et al., 2020). 79 

Second, the study utilizes a propensity score matching (PSM) technique to address the self-80 

selection bias when estimating the impact of climate change adaptation on agrifood production. 81 

A plausible endogeneity concern exists, given that farmers autonomously make decisions 82 

regarding adaptation strategies. By matching farmers who have adopted climate change 83 

adaptation measures with those who have not, PSM effectively addresses this endogeneity issue 84 

while estimating treatment effects (Abid et al., 2016; Khan et al., 2021; Ma et al., 2022). Third, 85 

in addition to the two indicators of factor returns, we further examine the effects of climate 86 

change adaptation on the net returns of rice production. This facet holds significance as net 87 

returns, delineated as the disparity between farm revenue and variable costs, encapsulate 88 

additional expenditures that are not accounted for within land and labor productivity metrics. 89 

The remainder of this paper proceeds as follows—section 2 reviews relevant literature. 90 

Section 3 introduces empirical strategy. Section 4 presents the data source and the descriptive 91 

statistics. Section 5 presents and discusses empirical results, while the final Section 6 highlights 92 

the key conclusions and policy implications.  93 

2 Literature review 94 

A growing number of studies investigate the effects of climate change adaptation on agrifood 95 

production and rural household wellbeing. Within this domain, the literature delineates three 96 

primary thematic avenues of inquiry: the influence on poverty alleviation and risk mitigation, 97 

the ramifications on food security and household welfare, and the effects on agricultural yields 98 

and income generation.  99 

The first strand delves into the nexus between climate change adaptation measures and 100 
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their efficacy in alleviating poverty and mitigating risks (Ho and Shimada, 2021; Issahaku et 101 

al., 2020; Sarr et al., 2021; Shahzad and Abdulai, 2020; Tesfaye et al., 2021). For example, 102 

Issahaku et al. (2020) analyzed Ghana’s climate change adaptations of smallholder farming 103 

households. Adopting adaptation strategies (i.e., irrigation, soil conservation, and enhanced 104 

cropping calendar management) as a package reduces multi-dimensional poverty and downside 105 

risk exposure. Tesfaye et al. (2021) found that climate-smart innovations, including minimum 106 

tillage, cereal-legume intercropping, and their combination, reduce the incidence and depth of 107 

poverty in Ethiopia, indicating their risk mitigation role. Sarr et al. (2021) reported that the rice 108 

intensification system significantly reduces the downside risk of crop failure in Tanzania. 109 

The second strand delves into the intricate relationship between climate change adaptations 110 

and the overarching concerns of food security and household welfare (Bairagi et al., 2020; 111 

Bazzana et al., 2022; Issahaku and Abdulai, 2020; Martey et al., 2021, 2020; Shahzad and 112 

Abdulai, 2021). For example, using household survey data from Ghana, Issahaku and Abdulai 113 

(2020) observed that adopting climate-smart practices (soil and water conservation and crop 114 

choices) positively and significantly impacts food and nutrition security. Martey et al. (2020) 115 

found that adopting row planting and drought-tolerant maize varieties, two representative 116 

climate-smart agriculture practices increases both yield and intensity of maize 117 

commercialization but negatively affects consumption in Ghana. In the study on climate-smart 118 

agricultural (CSA) practices in Pakistan, Shahzad and Abdulai (2021) showed that adopting 119 

CSA practices (i.e., change in cropping calendar, diversified seed varieties, changing input mix, 120 

and soil and water conservation measures) significantly reduces household food insecurity and 121 

increases household dietary diversity.  122 

The third strand centers on elucidating the ramifications of climate change adaptation 123 

strategies on agricultural yields and income dynamics (Bazzana et al., 2022; Khan et al., 2021; 124 

Lachaud et al., 2021; Maggio et al., 2022; Vatsa et al., 2024; Wang et al., 2022; Wouterse et 125 
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al., 2022). For example, Wang et al. (2022) found that farmers’ adaptation to climate change 126 

significantly increases rice yields in China. Maggio et al. (2022) showed that adopting organic 127 

fertilizer and maize-legume intercropping positively affects the total value of crop production 128 

in Uganda. Focusing on shrimp aquaculture in Vietnam, Do and Ho (2022) reported that the 129 

adoption of upgrading pond dikes and settling pond is associated with increased productivity in 130 

shrimp farming.  131 

Generally, efficiency in agrifood production has been primarily expressed in terms of yield 132 

(kg per unit of land) or farm income (value per unit of land) in the existing literature. However, 133 

productivity increases for a sustainable agrifood system, and more dimensions, such as labor 134 

productivity, should be considered (FAO, 2018). Studies investigating the relationship between 135 

climate change adaptations and labor productivity remain scarce. In this study, we aim to 136 

provide empirical evidence on farmers’ climate change adaptation and its impact on agrifood 137 

production, captured by two indicators related to factor returns: land productivity and labor 138 

productivity. This study could supplement existing literature by enriching our understanding 139 

from the perspective of labor productivity in agrifood production systems (Fentie and Beyene, 140 

2019).  141 

3 Empirical strategy 142 

3.1 Self-selection bias issue and model selection 143 

We assume a linear relationship between climate change adaptation and returns to land and 144 

labor. The empirical model for examining the relationship between climate change adaptation 145 

and agrifood production can be specified as a general agricultural production function: 146 

𝑌𝑖 = 𝛼0 + 𝛼𝑎𝐴𝑖 + 𝛼𝑥𝑋𝑖 + 𝜀𝑖 (1) 

where 𝑌𝑖 refers to the dependent variables, including land productivity and labor productivity, 147 

for household 𝑖; 𝐴𝑖 captures the climate change adaption status; 𝑋𝑖 represents other explanatory 148 

variables that are expected to affect the outputs; 𝛼0  is a constant; 𝛼𝑎  and 𝛼𝑥  are the 149 
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corresponding parameters; 𝜀𝑖 is a error term. In particular, 𝛼𝑎 is used to capture the effect of 150 

climate change adaptation on the dependent variable. If 𝛼𝑎 > 0 and is statistically significant, 151 

suggesting that climate change adaptation increases land productivity or labor productivity and 152 

vice versa. 153 

It is up to farmers whether they should adapt to climate change, as it is a self-determined 154 

process. Farmers’ demographic and farm-level characteristics tend to influence their climate 155 

change adaptation decisions (Asmare et al., 2022; Fentie and Beyene, 2019; Issahaku and 156 

Abdulai, 2020; Martey et al., 2020). These facts lead to a potential selection bias issue of 157 

variable 𝐴𝑖 in Equation (1). Failing to account for the selection bias would generate biased and 158 

inconsistent estimates and mislead the policy implications.  159 

When experimental data have been collected through randomization, causal inference can 160 

be made through the counterfactual situation. However, our survey data were collected in a 161 

non-random context, which cannot directly provide information on the counterfactual scenario. 162 

Therefore, it is necessary to infer the direct effect of climate change adaptation from the 163 

variation in outcomes across rural households using non-experimental approaches. 164 

Previous studies have employed both instrument variable (IV) based methods and non-165 

parametric approaches to address the selection bias issue of a dichotomous treatment variable. 166 

The IV-based methods include, for example, two-stage least square (2SLS) regression and 167 

endogenous switching regression (ESR) model (Issahaku and Abdulai, 2020; Midingoyi et al., 168 

2019; Vatsa et al., 2024; Wang et al., 2022). The non-parametric approaches include, for 169 

example, the PSM technique (Fentie and Beyene, 2019; Gorst et al., 2018; Khanal et al., 2019; 170 

Ma et al., 2022) and inverse probability weighted regression adjustment (IPWRA) estimator 171 

(Addison et al., 2020; Danso-Abbeam and Baiyegunhi, 2018; Zheng and Ma, 2021). It bears an 172 

emphasis here that a valid IV should meet strict criteria of exogeneity, and sometimes it is 173 

difficult to identify an ideal IV in the available observational data. Bowden et al. (2016) and 174 
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Ma et al. (2022) pointed out that failure to use the valid IV in the IV-based estimations would 175 

yield inconsistent estimates. We employed the PSM in the present study because we could not 176 

find a reasonable IV in our dataset. We also utilize the IPWRA estimator for robustness checks. 177 

3.2 Propensity score matching approach  178 

The PSM approach involves a two-step process. In the first step, a probit model estimates the 179 

probability that farming households choose to adapt to climate change. The following 180 

specification can express it: 181 

𝐴𝑖
∗ = 𝛽𝑖𝑍𝑖 + 𝜇𝑖 , 𝐴𝑖 = {

1, 𝑖𝑓 𝐴𝑖
∗ > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

where 𝐴𝑖
∗ is the latent variable, representing the probability that household 𝑖 adapts to climate 182 

change. Although 𝐴𝑖
∗ is unobservable, it could be represented and observed by 𝐴𝑖: 𝐴𝑖 = 1 for 183 

climate change adapters and 𝐴𝑖 = 0 for non-adapters. 𝑍𝑖 refers to a vector of control variables, 184 

including the household- and farm-level characteristics, and 𝛽𝑖 is the corresponding parameters 185 

to be estimated. 𝜇𝑖 refers to an error term. 186 

The second step calculates the treatment effects of climate change adaptation. In essence, 187 

the PSM model facilitates the calculations of the average treatment effects (ATE), average 188 

treatment effects on the untreated (ATU), and average treatment effect for the treated population 189 

(ATT). The ATT is the most popular (Fentie and Beyene, 2019; Khanal et al., 2019; Ma et al., 190 

2022). In the present study, we are also interested in estimating ATT, expressed as follows: 191 

𝐴𝑇𝑇 = 𝐸(𝑌1 − 𝑌0|𝐴 = 1) = 𝐸(𝑌1|𝐴 = 1) − 𝐸(𝑌0|𝐴 = 1) (3) 

where 𝑌1  denotes the dependent variable (land productivity or labor productivity) when 192 

households adapted to climate change, and 𝑌0  is the value of the same variable when a 193 

household did not adapt to climate change. 𝐸(𝑌1|𝐴 = 1) refers to the expected dependent 194 

variable for the treated group in the observed scenario, whereas 𝐸(𝑌0|𝐴 = 1) is the expected 195 

dependent variable for the treated group in the counterfactual scenario. 196 
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Several matching techniques have been employed in previous studies to calculate the ATT, 197 

such as kernel-based matching (KBM), nearest neighbor matching (NNM), and caliper-based 198 

matching (CBM) (Kim et al., 2020; Ma et al., 2022; Zhang et al., 2020). Each technique has 199 

advantages and disadvantages, so it is helpful to use comprehensive methods when estimating 200 

treatment effects and evaluating their robustness. For example, using both KBM and NNM 201 

techniques, Ma et al. (2022) assessed the impact of information acquisition on nutrition intake 202 

and found robust causal positive effects. Similarly, we estimate the impacts of climate change 203 

adaptation on land productivity and labor productivity utilizing both the KBM and NNM (1-5) 204 

techniques. 205 

4 Data source and descriptive statistics 206 

4.1 Data source 207 

The data for this study was collected by a household survey implemented between January and 208 

February 2022. The survey area covers five provinces in China, namely Jiangsu, Henan, Hubei, 209 

Hunan, and Sichuan. Among them, Jiangsu and Sichuan are located in the eastern and western 210 

regions, respectively, while Henan, Hubei, and Hunan are in the central regions. The different 211 

agroecological conditions across provinces would capture the heterogeneous responses to 212 

climate change adaptations. The samples were selected in a four-stage sampling framework. 213 

The first stage includes the purposive selection of five provinces, and the second involves 214 

randomly selecting around 8-10 counties in each province. Subsequently, the third and fourth 215 

stages involve randomly choosing 1-2 villages in each county and approximately 10 households 216 

in each village. Because not all respondents participated in farm production and the returns to 217 

land and labor are different across crops, we only focused on respondents who cultivated rice 218 

in the 2021 farming season for consistent estimations. The final sample of 415 observations is 219 

used in the empirical analyses.  220 

Our structured questionnaire covers various modules, enabling enumerators to collect data 221 
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through face-to-face interviews. To capture returns to land and labor, we collected detailed 222 

information on inputs (e.g., land size, family labor, and hired labor) and outputs (e.g., yields 223 

and sale price) of rice production. In particular, we asked farmers to report the number of family 224 

laborers participating in rice production and their working days. In addition, the number of 225 

hired laborers for rice production was also collected. We aggregate the number of labor-day for 226 

family labor and hired labor as total labor use, accounting for the shadow uses of unpaid labor.  227 

We employ value- (farm revenue) rather than quantity-based (yield) measurement of rice 228 

output to account for the potential effects of the heterogenous market price. Specifically, land 229 

productivity is measured as rice output per unit of land (Yuan/mu), and labor productivity is 230 

measured as rice output per unit of labor-day (Yuan/labor-day). We define climate change 231 

adaptation as a dummy variable capturing adopting improved varieties and/or soil and water 232 

conservation practices. Improved varieties refer to insect/disease-resistant or stress-tolerant 233 

varieties (Hörner and Wollni, 2022), while soil and water conservation practices refer to 234 

minimum tillage (Aryal et al., 2018). Though climate change adaptation strategies include many 235 

techniques across different agroecological environments, crops, and countries (Do and Ho, 236 

2022; Ho et al., 2022; Issahaku et al., 2020; Wang et al., 2022), focusing on improved varieties 237 

and soil and water conservation practices enables us to compare and estimate our results from 238 

a general view.  239 

4.2 Descriptive statistics 240 

The variable definition and summary statistics are presented in Table 1. It shows that the 241 

average land productivity is 670.63 Yuan/mu, and the average labor productivity is 59.53 242 

Yuan/labor-day. More than half of households (54%) have adopted adaptation strategies to 243 

climate change. Approximately 65% of household heads are male, and their average age is 54. 244 

Household heads possess an average education level of 6.95 years. In terms of self-rated life 245 

satisfaction, they report being satisfied with their lives on average, scoring 4.06 out of 5. There 246 
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are around 4-5 residents per household, and they own an average of 8.18 mu of land for rice 247 

production. Approximately 58% of households have electronic bicycles, and 20% have access 248 

to agricultural information extension agents. The average distance to the nearest train station is 249 

40.39 kilometers, and the average distance to the nearest credit source is 2.61 kilometers. In our 250 

sample, households from Jiangsu, Henan, Hubei, Hunan, and Sichuan account for 13%, 15%, 251 

19%, 27%, and 26%, respectively. 252 

[Insert Table 1 here] 253 

The differences in the means of household demographic and farm-level characteristics 254 

variables between climate change adapters and non-adapters are presented in Table 2. The last 255 

column in Table 2 reports the mean differences and the corresponding statistical significances. 256 

The upper part of Table 2 shows that regarding land productivity, climate change adapters 257 

obtain 743.07 Yuan/mu, which is 158.62 Yuan/mu higher than non-adapters. The difference is 258 

significant at the 5% level. The labor productivity for adapters is also 29.70 Yuan/mu higher 259 

than that for non-adapters, though the mean difference is insignificant. Regarding control 260 

variables, the results show that the household heads in the climate change adapters tend to have 261 

lower life satisfaction than their non-adapter counterparts. The family size for climate change 262 

adapters is smaller than for non-adapters. Compared to non-adapters, climate change adapters 263 

are less likely to live in villages with an agricultural information extension agent. The distance 264 

to the train station and credit source for the adapters is longer than for the non-adapters. 265 

However, the simple mean difference test produces unsolid results since confounding factors 266 

are not addressed, leading to misleading conclusions. Therefore, this study employs the PSM 267 

method to address the sample selection bias and estimate the unbiased effects of climate change 268 

adaptation on agricultural outcomes. 269 

[Insert Table 2 here] 270 

5 Results and discussions  271 
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5.1 Propensity score estimations and matching quality tests   272 

5.1.1 Propensity score estimations 273 

Table 3 presents the Probit model’s results, estimated by Equation (2). Estimating Equation (2) 274 

mainly aims to generate propensity scores for matching while providing valuable insights into 275 

the determinants of adaptation to climate change. We interpret the results below to enrich our 276 

understanding of the pros and cons of farmers’ adaptation decisions. We present the coefficients 277 

and corresponding marginal effects in the second and third columns of Table 3.  278 

[Insert Table 3 here] 279 

The marginal effect of the age variable is 0.005 and statistically significant at the 5% level, 280 

indicating that one-year increase in household head’s age is associated with a 0.5% higher 281 

probability of adapting to climate change. The finding echoes the results of Asmare et al. (2022) 282 

on Ethiopia. They found that the likelihood of implementing climate change adaptation is 283 

positively associated with the age of respondents. An additional year of education would 284 

increase the propensity of farmers’ adaptation decisions by 1.3%. Higher education levels 285 

enable farmers to learn more about farm innovations and motivate them to make adaptation 286 

decisions. This aligns with the results of Kangogo et al. (2021), who reported that education is 287 

positively associated with adopting certified seed and soil testing. Interestingly, household 288 

heads’ life satisfaction is negatively related to their decisions to adapt to climate change. 289 

Another unit increase in life satisfaction is related to a 9.0% lower probability of adaptation 290 

decisions. Those satisfied with their life would be less likely to change their cropping patterns 291 

because climate change adaptation requires additional capital investment and labor inputs.  292 

The marginal effect of temperature perception is positive and statistically significant, 293 

indicating that rice farmers who perceive severe temperature change are more likely to adapt to 294 

climate change. The positive and statistically significant marginal effect of the transportation 295 

variable suggests that an additional kilometer increase in the distance to the nearest 296 
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transportation station would increase the probability of adapting to climate change by 0.2%. 297 

Aryal et al. (2022) report similar findings: a longer distance to the nearest main market 298 

positively relates to farmers’ decisions to change farming practices in Ethiopia. Policymakers 299 

worldwide can consider these findings when planning transportation networks and market 300 

accessibility projects. Governments can enhance the likelihood of adopting climate-resilient 301 

practices by ensuring farmers have better access to transportation and markets. Farmers’ 302 

adaption decisions tend to be influenced by locational heterogeneities. Specifically, compared 303 

with farmers in Sichuan (reference province), those in Henan have an 18% higher probability 304 

of adapting to climate change.  305 

5.1.2 Matching quality tests 306 

Before formal testing the matching quality of the propensities derived using the Probit model, 307 

it is instructive to check the number of observations for which the propensity scores of climate 308 

change adapters and non-adapters in the sample. To this end, we examine the propensity score 309 

distribution of climate change adapters and non-adapters. Figure 1 presents the distribution of 310 

propensity scores before and after matching. The visual inspection of the distribution of the 311 

estimated propensity scores for households with and without treatment (i.e., climate change 312 

adapters and non-adapters) indicates that the common support condition is satisfied. 313 

[Insert Figure 1 here] 314 

Using the KBM and NNM methods, we test matching quality and present the results in 315 

Table 4. There is a significant reduction in Pseudo R2 and mean bias after matching (see 316 

columns 3 and 4) compared to the statistics before matching (see column 2). Table 4 also 317 

presents the likelihood ratio test of the joint significance of all the regressors in the Probit model 318 

before and after matching. The LR 𝜒2  values show that the significance of regressors on 319 

treatment status is jointly insignificant. All the evidence suggests our matching process 320 

successfully eliminates the potential bias between climate change adapters and non-adapters 321 
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arising from the control variables and achieves the covariate balance. 322 

[Insert Table 4 here] 323 

5.2 Treatment effects of adaptation on returns to land and labor 324 

Table 5 presents the treatment effects (ATTs) of climate change adaptation on agrifood 325 

production, captured by land productivity and labor productivity. Before explaining the 326 

estimated results, we utilize the Rosenbaum (2002) bound test to verify the sensitivity of the 327 

estimated ATTs. The results of Rosenbaum’s sensitivity analysis for the presence of hidden 328 

bias are presented in Table A1 in the Appendix. It shows that the treatment effects are robust 329 

to hidden bias for Gamma values as high as two. Thus, the ATTs estimated by the two PSM 330 

techniques are pure effects of adaptation to climate change. 331 

[Insert Table 5 here] 332 

In Table 5, both KBM and NNM (1-5) estimations show that farmers’ climate change 333 

adaptation positively impacts land productivity and labor productivity. All estimated ATTs 334 

except the estimate for labor productivity by the KBM estimator are statistically significant. 335 

Specifically, farmers who adapt to climate change would obtain 41.24-44.29% higher land 336 

productivity than their counterparts. This finding is largely in line with the finding of Abid et 337 

al. (2016), showing that climate change adaptation significantly and positively affects wheat 338 

productivity in Pakistan. Khan et al. (2021) also reported similar results in their study on the 339 

relationship between farm-level autonomous climate change adaptation and crop productivity 340 

in Pakistan. Regarding the treatment effects on labor productivity, it shows that the labor 341 

productivity of climate change adapters is 55.06-63.72% higher than that of counterfactuals. 342 

The findings indicate that apart from returns to land, returns to labor can also be improved 343 

through climate change adaptation. Thus, by fostering a more inclusive approach to technology 344 

adoption and climate change adaptation, countries can better equip their agricultural sectors to 345 

withstand the challenges posed by climate change, thereby contributing to global food security 346 



15 

 

and sustainable agricultural development. 347 

We further utilize the IPWRA estimator to check the robustness of ATTs estimated by the 348 

PSM technique. The IPWRA also owns features that eliminate selection bias related to a binary 349 

treatment variable and evaluate ATTs (Hörner and Wollni, 2021; Ma et al., 2022). The 350 

robustness check results estimated by the IPWRA estimator are presented in Table A2 in the 351 

Appendix. It provides similar results to Table 5. Climate change adaptation significantly 352 

increases land productivity by 38.97%, and its impact on labor productivity is positive, though 353 

statistically insignificant. Overall, our findings suggest that climate change adaptation is an 354 

effective way for rice farmers to increase returns to land and labor; the additional investments 355 

and labor inputs arising from climate change adaptation pay off. 356 

5.3 Treatment effects of adaptation on net returns  357 

Although climate change adaptation is related to significant increases in land productivity and 358 

labor productivity, the costs arising from additional capital and labor inputs are still neglected. 359 

Because of this, we construct the variable net returns, which are defined as the difference 360 

between farm revenue and variable costs. Net returns are preferred as they account for 361 

production costs (Hörner and Wollni, 2022; Zheng et al., 2021). The effects of climate change 362 

adaptation on net returns are presented in Table A3 in the Appendix. The results show that 363 

ATTs estimated by KBM and NNM techniques are positive and statistically significant, 364 

indicating that climate change adaptation also significantly increases net returns. Thus, we can 365 

confirm that the extra inputs associated with climate change adaptations are profitable 366 

investments. Policymakers in various regions can leverage this evidence to advocate for and 367 

implement policies supporting climate adaptation strategies, ensuring these investments yield 368 

economic benefits and environmental sustainability. 369 

6 Conclusion and policy implications 370 
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Farmers’ climate change adaptation is critical for sustainable agrifood production and food 371 

security, which previous studies have emphasized. Nevertheless, the adaptations are usually 372 

associated with additional inputs for capital and labor and household labor division. Whether 373 

these investments pay off for smallholder farmers is rarely investigated and lacks empirical 374 

evidence. Accordingly, this study estimates the impact of climate change adaptation on agrifood 375 

production, focusing on two indicators of factor returns: land productivity and labor 376 

productivity. For the empirical analysis, we utilize the PSM technique to control the selection 377 

bias associated with farmers’ adaptation decisions and estimate the rural household survey data 378 

collected from five provinces in China. Specifically, both KBM and NNM approaches are 379 

employed to ensure the validity of estimation results. We estimate the IPWRA estimator for 380 

robustness check. 381 

We first employ the Probit model to generate propensity scores and explore determinants 382 

of adaptation to climate change. The results show that farmers’ adaptation decisions are 383 

positively associated with the household heads’ age and education, temperature perception, and 384 

transportation conditions. In contrast, the life satisfaction of the household head negatively 385 

affects adaptation to climate change. Further, the results of KBM and NNM suggest that 386 

adapting to climate change is associated with significant increases in land and labor productivity. 387 

On average, the treatment effects of climate change adaptation are to increase land productivity 388 

by 41-44% and labor productivity by 55-64%, respectively. The ATTs estimated by the IPWRA 389 

technique also support the positive effects of climate change adaptation on returns to land and 390 

labor. We also find that climate change adaptation significantly increases net returns.  391 

The findings have practical implications for rice farmers, stakeholders, and policymakers. 392 

Overall, the findings of this study underline the importance of climate change adaptation in 393 

boosting agrifood production by increasing returns to land and labor. This confirms the positive 394 

role of climate change adaptation in welfare improvement from an innovative perspective of 395 
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factor returns. Thus, encouraging farmers’ climate change adaptation would promote 396 

sustainable agrifood production and food security.  397 

Though climate change adaptation is essential to increase land productivity and labor 398 

productivity, not all farmers are willing to take adaptation actions. We find that old and better-399 

educated farmers are more likely to adapt to climate change. Therefore, governments globally 400 

should aim to enhance awareness among younger and less-educated farmers about the adverse 401 

impacts of climate change on crop production and encourage them to adopt adaptation strategies. 402 

Policymakers in various regions can achieve this by developing inclusive technology adoption 403 

programs. For example, training initiatives can be organized in collaboration with local farmers’ 404 

organizations to provide practical, hands-on learning experiences. Furthermore, these strategies 405 

should be tailored to different regions’ specific cultural and socio-economic contexts to 406 

maximize their effectiveness.  407 

  408 
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Figures 568 

 

 

Figure 1 Density distribution of propensity scores for adapters and non-adapters before and 

after matching 

 569 
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Tables  570 

Table 1 Variable definition and summary statistics  

Variables Measurements Mean (S.D.) 

Dependent variables  

Land 

productivity 

Rice output per unit of land (Yuan/mu) a 670.63 

(722.36) 

Labor 

productivity 

Rice output per unit of labor (Yuan/labor-day) 59.53 (186.04) 

Climate change 

adaptation  

1 if household has adopted improved varieties (e.g., 

Insect/disease-resistant or stress-tolerant varieties) and/or 

soil and water conservation practices (e.g., minimum 

tillage), 0 otherwise 

0.54 (0.50) 

Independent variables  

Age Age of household head (years) 53.90 (12.55) 

Gender 1 if household head is male; 0 otherwise 0.65 (0.48) 

Education Educational years of household head (years) 6.95 (3.95) 

Life 

satisfaction 

Self-reported life satisfaction level of household head: 

1=very unsatisfied; 2=unsatisfied; 3=fair; 4=satisfied; 

5=very satisfied 

4.06 (0.88) 

Family size Number of family members (persons) 4.50 (1.54) 

Farm size Total land size for rice cultivation (mu) a  8.18 (27.69) 

Asset 

ownership 

1 if household owns electronic bicycle(s), 0 otherwise 0.58 (0.49) 

Access to 

extension 

1 if agricultural information extension agents exist in the 

local village, 0 otherwise 

0.20 (0.40) 

Pest 

experience 

1 if household experienced pest attack during rice 

production, 0 otherwise 

0.12 (0.32) 

Temperature 

perception  

Self-reported perception of temperature change in the last 

five years: 1=Extremely severe; 2=Severe; 3=Moderate; 

4=Minor; 5=Very minor 

3.35 (1.10) 

Precipitation 

perception 

Self-reported perception of precipitation changes in the last 

five years: 1=Extremely severe; 2=Severe; 3=Moderate; 

4=Minor; 5=Very minor 

3.43 (1.03) 

Drought 

experience 

1 if household experienced drought during rice production, 

0 otherwise 

0.10 (0.30) 

Irrigation 

frequency 

Frequency of irrigation during rice cultivation 2.84 (2.83) 

Transportation  Distance to the nearest train station (km) 40.39 (41.22) 
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Distance to 

credit source 

Distance to the nearest formal (e.g., bank or financial 

agents) and informal (e.g., relatives or friends) credit 

sources (km) 

2.61 (2.44) 

Jiangsu 1 if household locates in Jiangsu province, 0 otherwise 0.13 (0.34) 

Henan 1 if household locates in Henan province, 0 otherwise 0.15 (0.36) 

Hubei 1 if household locates in Hubei province, 0 otherwise 0.19 (0.39) 

Hunan  1 if household locates in Hunan province, 0 otherwise 0.27 (0.45) 

Sichuan  1 if household locates in Sichuan province, 0 otherwise 0.26 (0.44) 

Sample size  415 

Note: S.D. refers to the standard deviation. 

a Yuan is Chinese currency (1 USD = 6.45 Yuan in 2021); 1 mu = 1/15 hectare. 
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Table 2 Mean differences of the selected variables between adapters and non-adapters 

Variables Adapters Non-adapters Mean differences 

Land productivity 743.07 (719.58) 584.45 (718.04) 158.62** 

Labor productivity 73.04 (217.48) 43.47 (138.61) 29.57 

Age 54.17 (12.70) 53.59 (12.39) 0.58 

Gender 0.68 (0.47) 0.61 (0.49) 0.07 

Education 7.08 (3.82) 6.80 (4.11) 0.28 

Life satisfaction 3.96 (0.91) 4.18 (0.84) -0.23*** 

Family size 4.31 (1.50) 4.73 (1.57) -0.43*** 

Farm size 8.97 (26.23) 7.25 (29.38) 1.72 

Asset ownership 0.55 (0.50) 0.61 (0.49) -0.06 

Access to extension 0.16 (0.37) 0.26 (0.44) -0.10** 

Pest experience 0.14 (0.35) 0.09 (0.29) 0.05 

Temperature perception  3.57 (0.99) 3.08 (1.17) 0.49*** 

Precipitation perception 3.62 (0.91) 3.19 (1.12) 0.43*** 

Drought experience 0.11 (0.31) 0.08 (0.27) 0.03 

Irrigation frequency 2.66 (2.69) 3.06 (2.97) -0.41 

Transportation  44.76 (49.10) 35.20 (28.49) 9.56** 

Distance to credit source 2.90 (2.66) 2.25 (2.11) 0.65*** 

Jiangsu 0.09 (0.28) 0.18 (0.38) -0.09*** 

Henan 0.19 (0.39) 0.10 (0.30) 0.09*** 

Hubei 0.18 (0.38) 0.19 (0.40) -0.02 

Hunan  0.28 (0.45) 0.26 (0.44) 0.03 

Sichuan 0.26 (0.44) 0.27 (0.44) -0.01 

Sample size 225 190  

Note: *** p < 0.01 and ** p < 0.05. Standard deviation is presented in parentheses. 
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Table 3 Determinants of climate change adaptation: Probit model estimates  

Variables Coefficients Marginal effects 

Age 0.015 (0.007)** 0.005 (0.002)** 

Gender 0.225 (0.145) 0.078 (0.049) 

Education 0.038 (0.021)* 0.013 (0.007)* 

Life satisfaction -0.260 (0.079)*** -0.090 (0.026)*** 

Family size -0.072 (0.045) -0.025 (0.015) 

Farm size 0.003 (0.002) 0.001 (0.001) 

Asset ownership -0.074 (0.148) -0.026 (0.051) 

Access to extension -0.204 (0.166) -0.070 (0.057) 

Pest experience 0.139 (0.261) 0.048 (0.090) 

Temperature perception  0.213 (0.087)** 0.074 (0.030)** 

Precipitation perception 0.110 (0.097) 0.038 (0.033) 

Drought experience 0.069 (0.285) 0.024 (0.098) 

Irrigation frequency -0.028 (0.025) -0.010 (0.008) 

Transportation  0.005 (0.002)*** 0.002 (0.001)*** 

Distance to credit source 0.035 (0.030) 0.012 (0.010) 

Jiangsu 0.034 (0.248) 0.012 (0.085) 

Henan 0.521 (0.234)** 0.180 (0.079)** 

Hubei -0.222 (0.206) -0.076 (0.071) 

Hunan  0.155 (0.185) 0.053 (0.064) 

Constant -1.098 (0.676)  

Summary statistics   

Pseudo R2 0.121  

Model 2 70.83***, p-value = 0.000 

Log-likelihood -251.477  

Sample size 415  

Note: *** p < 0.01, ** p < 0.05, and * p < 0.10. The reference province is Sichuan. Robust standard errors are 

presented in parentheses. 
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Table 4 Matching quality test: balancing property  

 

Before matching 

After matching 

 KBM NNM (1-5) 

Pseudo R2 0.121 0.006 0.009 

Mean bias 19.0 3.5 4.0 

LR χ2 69.40*** 3.72 5.07 

p-value 0.000 1.000 0.999 

Note: *** p < 0.01. 
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Table 5 Average treatment effects of climate change adaptation on returns to land and labor: 

PSM estimation 

 Mean outcomes  Change 

(%)  Actual Counterfactual ATT 

KBM      

Land productivity 740.820 513.419 227.401 (72.122)*** 44.29 

Labor productivity 71.978 46.419 25.559 (14.964)* 55.06 

NNM (1-5)     

Land productivity 740.820 524.520 216.300 (84.827)** 41.24 

Labor productivity 71.978 43.966 28.013 (16.910)* 63.72 

Note: *** p < 0.01, ** p < 0.05, and * p < 0.10. ATT refers to average treatment effects on the treated. 

Bootstrap standard errors based on 100 replications are presented in parentheses for ATT. 
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Appendix 579 

Table A1 Rosenbaum bounds for treatments effects of climate change adaptation on returns 

to land and labor 

Outcome variables Gamma 

Sig+upper 

bound 

significance 

level 

Sig- lower 

bound 

significance 

level 

t-hat+upper 

bound Hodges- 

Lehman point 

estimate 

t-hat+upper 

bound Hodges- 

Lehman point 

estimate 

Land productivity 1.00 0 0 674.844 674.844 

 1.20 0 0 633.333 720.000 

 1.40 0 0 583.333 783.333 

 1.60 0 0 550.000 836.667 

 1.80 0 0 525.000 872.500 

 2.00 0 0 500.000 900.000 

Labor productivity 1.00 0 0 28.571 28.571 

 1.20 0 0 21.875 34.722 

 1.40 0 0 18.056 39.818 

 1.60 0 0 14.444 46.875 

 1.80 0 0 12.578 52.000 

 2.00 0 0 11.638 56.250 

Note: N = 225 matched pairs. Gamma is the log odds differential assignment due to unobserved factors. 
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Table A2 Average treatment effects of climate change adaptation on returns to land and 

labor: IPWRA estimation 

 Mean outcomes  Change 

(%)  Actual Counterfactual ATT 

IPWRA     

Land productivity 743.921 535.323 208.598 (69.138)*** 38.97 

Labor productivity 73.098 48.105 24.993 (16.022) 51.96 

Note: *** p < 0.01. ATT refers to average treatment effects on the treated. Robust standard errors are 

presented in parentheses for ATT. 
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Table A3 Average treatment effects of climate change adaptation on net returns: PSM 

estimation 

 ATT 

 KBM NNM (1-5) 

Net returns  318.552 (72.137)*** 311.245 (94.038)*** 

Note: *** p < 0.01. ATT refers to average treatment effects on the treated. Bootstrap standard errors based on 

100 replications are presented in parentheses for ATT.  590 
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